Chiral Electroactive Precursors and Materials

Narcis Avarvari MOLTECH-Anjou, Université d'Angers, CNRS, FRANCE

Conferinta Diaspora Stiintifica, Bucuresti, 21-24 Septembrie 2010

Current research topics in the group

- 1. Chirality in tetrathiafulvalenes (TTF)
- 2. Electroactive ligands: TTF-pyridines, -phosphines, -oxazolines
- multifunctional materials
- enantioselective catalysis

D. Lorcy, N. Bellec, M. Fourmigué, N. Avarvari, *Coord. Chem. Rev.* 2009, 253, 1398-1438.

3. Covalent donor-acceptor compounds: TTF-triazines

5. Functional phosphonate ligands

Chem. Eur. J. 2009, 15, 380.

4. Intramolecular mixed valence species

 $X = PPh, SiMe_2, GeMe_2$ X = P=O, P=S, P[M]

Chem. Commun. 2004, 2794. Chem. Eur. J. 2007, 13, 5394. Organometallics 2009, 28, 3691.

New J. Chem. 2010, DOI: 10.1039/CONJ00204F

Tetrathiafulvalene (TTF) and Derivatives

Electrocrystallization Chemical oxidation

salts and charge transfer compounds with conducting and/or magnetic propertiesdetermined by the solid state organization

Pt electrode

HOMO TTF and SOMO TTF+.

crystallization in the presence of anions

organic-inorganic segregation

mixed valence

Tetrathiafulvalene (TTF) and Derivatives

Chemical oxidation

TTF-TCNQ, an organic metal

J. Ferraris, D. O. Cowan, V. Walatka, Jr., J. H. Perlstein, J. Am. Chem. Soc. 1973, 95, 948.

Tetrathiafulvalene (TTF) and Derivatives Electrocrystallization

 $(TM-TSF)_2X$ (X = PF_6^- , ClO_4^- , ReO_4^-) : a series of superconducting salts

Stacking in (TM-TSF)₂ClO₄

D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, *J. Phys. Lett.* **1980**, *41*, L195. K. Bechgaard et al., *J. Am. Chem. Soc.* **1981**, *103*, 2440.

Tetrathiafulvalene (TTF) and Derivatives

Current trends in TTF chemistry

metal-oxalates

Multifunctional Materials

BEDT-TTF

Coexistence or interplay of two or more physical properties within the same material

> And Fe(III), Cr(III), Mn(II), Cu(II), etc. based anions

M. Kurmoo, P. Day *et al. J. Am. Chem. Soc.*, **1995**, *117*, 12209. E. Coronado, C. J. Gómez-García *et al. Nature* **2000**, *408*, 447. E. Coronado, P. Day *Chem. Rev.* **2004**, *104*, 5419.

Also chiral magnets: magneto-chiral dichroism

M = Fe(III), Cr(III) C. Train, R. Gheorghe, V. Krstic, L.-M. Chamoreau, N. S. Ovanesyan, G. L. J. A. Rikken, M. Gruselle, M. Verdaguer *Nature Mater.* 2008, 7, 729.

••• chiral conductors?

Chiral tetrathiafulvalenes - Interests

I. Synthetic challenge

II. Chiroptical redox switches, chiral recognition

III. Chiral redox active ligands for enantioselective catalysis

The control of the metal complexes reactivity upon oxidation - reduction

Influence on the catalytic processes?

substitutionally inert redox-switchable ligands redox-switchable hemilabile ligands

IV. Chiral molecular conductors

C. A. Mirkin et al. Angew. Chem. Int. Ed. Engl. 1998, 37, 894

Chiral molecular conductors

1. Optical activity + Electrical conductivity Multifunctional materials

2. Enantiopure forms are inherently less disordered in the crystalline state

Influence on the conducting properties

~ CH₃ C. Réthoré, M. Fourmigué, N. Avarvari *Chem. Commun.* **2004**, 1384.

C. Réthoré, N. Avarvari, E. Canadell,

P. Auban-Senzier, M. Fourmigué *J. Am. Chem. Soc.* 2005, 127, 5748.

A. M. Madalan, C. Réthoré, M. Fourmigué, E. Canadell, E. B. Lopes, M. Almeida, P. Auban-Senzier, N. Avarvari *Chem. Eur. J.* **2010**, *16*, 528.

3. Reports by *Rikken et al.* on electrical magneto-chiral anisotropy (eMChA) effects

Chiral SWNT Krstić, Rikken et al. J. Chem. Phys. 2002, 117, 11315

Electrical resistance $R^{D/L}(\mathbf{I}, \mathbf{B}) = R_0 \{1 + \beta B^2 + \chi^{D/L} \mathbf{I} \cdot \mathbf{B}\}$ ha $R(\vec{H}, \vec{I}) \# R(\vec{H}, -\vec{I})$ eMChA effect (

+ $\chi^{D/L}I \cdot B$ handedness of the chiral conductor eMChA effect (very weak)

4. Superconductivity in non-centrosymmetric systems

R. Roy, C. Kallin, Phys. Rev. B 2008, 77, 174513.

need of a library of chiral precursors in which the chiral information is addressed in different ways

Several strategies are envisaged

C₂ symmetric chiral tetrathiafulvalenes I. TTF-bis(oxazolines) TTF-BOX

C₂ symmetric chiral tetrathiafulvalenes TTF-BOX: conformational issues

Theoretical calculations DFT/B3LYP/6-31+G(d): four energy minima

F. Riobé, N. Avarvari, Chem. Commun. 2009, 3753.

TTF-BOX

II. Protonation

 $[(S,S)-EDT-TTF-bis(Me-Ox)H]^{+}_{2}[Mo_{6}O_{19}]^{2}$

Monoprotonated TTF-BOX, TTF stays neutral

Rigid planar [bis(Me-Ox)H]⁺ motif

DFT/B3LYP/6-31+G(d)

TF⁰

New donor-acceptor system

TTF-BOX

Chiral Donor-Acceptor system modulated by pH

EDT-TTF-Me-BOX in solution of $CH_3CN:CH_2Cl_2$ 1:1 (C = 5. 10⁻⁵ M) + increasing amounts of APTS

TTF-Bis(BOX)

C_3 symmetric tetrathiafulvalenes

II. Using a C_3 symmetric platform

ŏ ŏ ŏ

C_3 symmetric TTFs: convergent synthesis

C_3 symmetric TTFs: conducting supramolecular wires

I. Danila, F. Riobé, J. Puigmarti, A. Pérez del Pino, J. D. Wallis, D. Amabilino, N. Avarvari, *J. Mater. Chem.* **2009**, *19*, 4495.

Doping with iodine

Doping with iodine

Journal of Materials Chemistry

I. Danila, F. Riobé, J. Puigmarti, A. Pérez del Pino, J. D. Wallis, D. Amabilino, N. Avarvari, *J. Mater. Chem.* **2009**, *19*, 4495.

Supramolecular chirality

I. Danila, F. Riobé, J. Puigmarti, L. Feldborg, J. D. Wallis, D. Amabilino, N. Avarvari, to be submitted

Supramolecular chirality

Circular dichroism measurements

CD spectra and evolution of the signal at 387 nm in dioxane

M helicity in solution for the primary fibers!

I. Danila, F. Riobé, J. Puigmarti, L. Feldborg, J. D. Wallis, D. Amabilino, N. Avarvari, to be submitted

Formation of fibres

J. A. A. W. Elemans, A.E. Rowan, R. J. M. Nolte, J. Mater. Chem. 2003, 13, 2661.

A sensitive system

Fibres

Obtained with a heatgun

Obtained with a hotplate

Microcroissants !

SEM images

Sergeants and soldiers?

chiral/achiral 60/40

Supramolecular chirality

(R,R,R,R,R,R) enantiomer

CD measurements

M helicity

I. Danila, F. Piron, F. Riobé, D. Amabilino, N. Avarvari, unpublished

Supramolecular chirality

SEM images

Fibres from the racemic mixture

Inversion of helicity!

I. Danila, F. Piron, F. Riobé, D. Amabilino, N. Avarvari, unpublished

CONCLUSIONS and PERSPECTIVES

- 1. Chiral TTF-oxazolines (TTF-OX), -bis(oxazolines) (TTF-BOX) and -bis(BOX)
 - chiral conducting radical cation salts upon oxidation
 - coordination chemistry: paramagnetic centers multifunctional materials Lewis acidic centers - homogenous catalysis
 - tuning the chiroptical properties upon oxidation and protonation
- 2. C_3 -symmetry and supramolecular chirality
 - electroactive organogel and conducting nanofibers
 - formation of homochiral helical fibers
 - induction of chirality: sergeants-and-soldiers and majority rules

Acknowledgements

Dr. François Riobé

<mark>Dr. M. Lin</mark>ares Dr. D. <mark>Beljonne</mark> Univ. of Mons, Belgium

Molecular dynamics, CD calculations

CNRS - Université d'Angers, Région Pays de la Loire ANR Project CHIRAFUN (2009-2012) COST D 35 PHC Picasso (Angers-Barcelona)

City of Angers

